
用霍尔效应法则测量磁场实验报告怎么写
验题目通过效应测量磁场【实验目的】1、了解霍尔效应原理以及有关霍尔器件对要求的知识。
2、学习用“对称测量法”消除付效应影响。
3、根据霍尔电压判断霍尔元件载流子类型,计算载流子的浓度和迁移速度,【实验仪器】QS-H霍尔效应组合仪【实验原理】1、通过霍尔效应测量磁场霍尔效应装置如图2.3.1-1和图2.3.1-2所示。
将一个半导体薄片放在垂直于它的磁场中(B的方向沿z轴方向),当沿y方向的电极A、A上施加电流I时,薄片内定向移动的载流子(设平均速率为)受到洛伦兹力的作用,(1)无论载流子是负电荷还是正电荷,的方向均沿着x方向,在磁力的作用下,载流子发生偏移,产生电荷积累,从而在薄片B、B两侧产生一个电位差,形成一个电场E。
电场使载流子又受到一个与FB方向相反的电场力,(2)其中b为薄片宽度,随着电荷累积而增大,当达到稳定状态时,即(3)这时在B、B两侧建立的电场称为霍尔电场,相应的电压称为霍尔电压,电极B、B称为霍尔电极。
另一方面,射载流子浓度为n,薄片厚度为d,则电流强度与的关系为:或(4)由(3)和(4)可得到(5)另,则(6)R称为霍尔系数,它体现了材料的霍尔效应大小。
根据霍尔效应制作的元件称为霍尔元件。
在应用中,(6)常以如下形式出现:(7)式中称为霍尔元件灵敏度,称为控制电流。
由式(7)可见,若、已知,只要测出霍
霍尔效应测磁场实验报告
实验报告学生姓名:学号:指导教师:实验地点:实验时间:一、实验室名称:霍尔效应实验室二、实验项目名称:霍尔效应法测磁场三、实验学时:四、实验原理:(一)霍耳效应现象将一块半导体(或金属)薄片放在磁感应强度为B的磁场中,并让薄片平面与磁场方向(如Y方向)垂直。
如在薄片的横向(X方向)加一电流强度为的电流,那么在与磁场方向和电流方向垂直的Z方向将产生一电动势。
如图1所示,这种现象称为霍耳效应,称为霍耳电压。
霍耳发现,霍耳电压与电流强度和磁感应强度B成正比,与磁场方向薄片的厚度d反比,即(1)式中,比例系数R称为霍耳系数,对同一材料R为一常数。
因成品霍耳元件(根据霍耳效应制成的器件)的d也是一常数,故常用另一常数K来表示,有(2)式中,K称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。
如果霍耳元件的灵敏度K知道(一般由实验室给出),再测出电流和霍耳电压,就可根据式(3)算出磁感应强度B。
图1霍耳效应示意图图2霍耳效应解释(二)霍耳效应的解释现研究一个长度为l、宽度为b、厚度为d的N型半导体制成的霍耳元件。
当沿X方向通以电流后,载流子(对N型半导体是电子)e将以平均v沿与电流方向相反
霍尔效应法测量磁场为什么用补偿法
霍尔效应与应用设计摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。
本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。
关键词:霍尔系数,电导率,载流子浓度。
1.引言【实验背景】置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。
如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。
【实验目的】1.通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构;2.学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术;3.学会用“对称测量法”消除副效应所产生的系统误差的实验方法。
4.学习利用霍尔效应测量磁感应强度B及磁场分布。
二、实验内容与数据处理【实验原理】一、霍尔效应原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。
如图1所示。
当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有
用霍尔效应测量磁场
两种霍尔元件,一种开关型的,一种线性变化的。
在磁场中,电流流过霍尔元件的硅片,侧边会产生一个电压,线性元件的输出电压随外磁场而改变。
在霍尔效应测量磁场实验中,如何用实验方法判断元件表面与磁场是否垂直
一、实验名称: 霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的 、 曲线,了解霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差.三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转.当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场.对于图1所示.半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型.显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) .设 为霍尔电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:(1-1)因为 , ,又根据 ,则(1-2)其中 称为霍尔系数,是反映材料霍尔效应强弱的重要参数.只要测出 、 以及知道 和 ,可按下式计算 :(1-3)(1—4)为霍尔元件灵敏度.根据RH可进一步确定以下参数.(1)由 的符号(霍尔电压的正负)判断样品的导电类型.判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的 <0(即A′的电位低于A的电位),则样品属N型,反之为P型.(2)由 求载流子浓度 ,即 .应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的.严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅黄昆、谢希德著《半导体物理学》).(3)结合电导率的测量,求载流子的迁移率 .电导率 与载流子浓度 以及迁移率 之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多.产生上述霍尔效应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示.(1)厄廷好森效应引起的电势差 .由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 .可以证明 . 的正负与 和 的方向有关.(2)能斯特效应引起的电势差 .焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流.与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差 .若只考虑接触电阻的差异,则 的方向仅与磁场 的方向有关.(3)里纪-勒杜克效应产生的电势差 .上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势 . 的正负仅与 的方向有关,而与 的方向无关.(4)不等电势效应引起的电势差 .由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 . 的正负只与电流 的方向有关,而与 的方向无关.综上所述,在确定的磁场 和电流 下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和.可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响.在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压.即:



