
基本概念与运算法则 三种统计图之间有什么共性和差异
我知道,有条形,扇形,折线统计图三种。
条形:可以清楚的看出数量的多少。
扇形:可以看出数量的百分比。
折线:可以清楚的看出数量的增减变化。
实数四则运算法则概念
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。
实数加、减、乘、除(除数不为零)、平方后结果还是实数。
任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
对数公式的运算法则
性质①loga(1)=0;②loga(a)=1;③负数与零无对数.2对数恒等式a^logaN=N(a>0,a≠1)3运算法则①loga(MN)=logaM+logaN;②loga(M\\\/N)=logaM-logaN;③对logaM中M的n次方有=nlogaM;如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底。
定义:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1、a^(log(a)(b))=b2、log(a)(MN)=log(a)(M)+log(a)(N);3、log(a)(M÷N)=log(a)(M)-log(a)(N);4、log(a)(M^n)=nlog(a)(M)5、log(a^n)M=1\\\/nlog(a)(M)推导:1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、MN=M×N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]×a^[log(a)(N)]由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3、与(2)类似处理M\\\/N=M÷N由基本性质1(换掉M和N)a^[log(a)(M÷N)]=a^[log(a)(M)]÷a^[log(a)(N)]由指数的性质a^[log(a)(M÷N)]=a^{[log(a)(M)]-[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M÷N)=log(a)(M)-log(a)(N)4、与(2)类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)基本性质4推广log(a^n)(b^m)=m\\\/n*[log(a)(b)]推导如下:由换底公式(换底公式见下面)[lnx是log(e)(x),e称
复数的概念与运算
小数除法的计算法则:除数是整数的小学除法按照整数除法的方法来除,然后对齐被除数的小数点点上商的小数点即可。
除数是小学的除法,先移动除数的小数点使它变成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动相同的位数(位数不够的用0来补足),然后按照除数是整数的除法来除,然后对齐被除数的小数点点上商的小数点就可以了。
很高兴为你解答,希望能帮到你
指数幂的指数幂的运算法则
整数的法则 1)从被除数的高位起,先数有几位,再用除数试除数的前几位果它比除数小,再试除多一位数; 2)除到被除数的哪一位,就在那一位上面写上商; 3)每次除后余下的数必须比除数小。
除数是整数的小数除法法则: 1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐; 2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
除数是小数的小数除法法则: 1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足; 2)然后按照除数是整数的小数除法来除。
分数的除法法则: 1)用被除数的分子与除数的分母相乘作为分子; 2)用被除数的分母与除数的分子相乘作为分母。
(即被除数不变,乘除数的倒数)
小学生数学四则运算法则
四则是指加法、减法、乘法、除法的计算法在数学中,当一级运算(加减)和二级运算(乘除)同时出现在一个式子中时,它们的运算顺序是先乘除,后加减,如果有括号就先算括号内后算括号外,同一级运算顺序是从左到右,这样的运算叫四则运算。
四则运算的法则:1、整数加、减计算法则: 1)要把相同数位对齐,再把相同计数单位上的数相加或相减; 2)哪一位满十就向前一位进。
2、小数加、减法的计算法则: 1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐), 2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。
)3、分数加、减计算法则: 1)分母相同时,只把分子相加、减,分母不变; 2)分母不相同时,要先通分成同分母分数再相加、减。
4、整数乘法法则: 1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐; 2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。
)5、小数乘法法则: 1)按整数乘法的法则算出积; 2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。
3)得数的小数部分末尾有0,一般要把0去掉。
6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。
7、整数的除法法则 1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数; 2)除到被除数的哪一位,就在那一位上面写上商; 3)每次除后余下的数必须比除数小。
8、除数是整数的小数除法法则: 1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐; 2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
9、除数是小数的小数除法法则: 1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足; 2)然后按照除数是整数的小数除法来除10、分数的除法法则: 1)用被除数的分子与除数的分母相乘作为分子; 2)用被除数的分母与除数的分子相乘作为分母。



